Going beyond growth with the growth hormone deficiency (GHD) patient

Growth hormone (GH) signaling

GH secretion from the anterior pituitary into the blood activates GH receptors on the cell membrane of several cell types and induces insulin-like growth factor I (IGF-I) production.

GHD

A rare cause of growth failure that can be congenital or acquired

- Affects 1:3500 children

Impacts on multiple systems and organs

Is a lifelong condition

Transition for childhood-onset GHD patients

Transition period is defined as the time from late puberty to establishment of adult muscle and bone composition

Transition typically begins in the mid-late teens and continues for 6–7 years past adult height

Pediatric phase (also called ‘adapting to early adolescence’)

- Reassessment of Endocrinology and disease management
- Assessment of patient and caregiver readiness
- Establish MDT
- Discuss transfer plan with patient and family
- Increase patient self-management
- rhGH treatment
- Periodic assessment of IGF-I, clinical symptoms, BMI
- Plan first adult care appointment

Adult phase

- Full care by adult endocrinologist
- Plan lifelong care
- MDT involvement

Steps in transition for childhood-onset GHD

BMI, body mass index; MDT, multidisciplinary team; rhGH, recombinant human growth hormone

GHD and carbohydrate metabolism

- Reduced glucose tolerance
- Impaired insulin sensitivity
- Increased insulin resistance

Impact of GHD on carbohydrate metabolism

- Episodic fasting hypoglycemia
- Increased insulin sensitivity
- Increased insulin sensitivity, diminishes with age as a result of: Hyperglycemia (ex-steroid effects)
- Body composition changes disease

GHD and the cardiovascular system

- Increased vescular adiposity
- Decreased lean body mass
- Hypertension
- Atherosclerosis
- Premature cardiovascular morbidity and mortality

GH and bone

- Normal bone mineral content and density, when corrected for stature
- GH replacement has expected effect for change in size
- Increased markers of bone turnover
- Short term: BMD reduced
- Long term: Bone mass and cortical thickness increased

Monitoring of glycemic status is not indicated for multiple systems and organs a affects production cell types and induces insulin-like growth factor I (IGF-I)

Going beyond growth with the growth hormone deficiency (GHD) patient

Going beyond growth with the growth hormone deficiency (GHD) patient

Characteristics of GHD by age

Infancy

- Increased appetite
- Unfavorable CVD risk
- Decreased BMI

Childhood

- Hypoglycemia
- Poor feeding
- Delayed milestones
- Signs of pituitary disease, eg nystagmus, mid-line defects, microopen

Adulthood

- Increased adiposity
- Delayed/disturbed puberty
- Failure to reach peak bone mass

LATE ADOLESCENCE TO TRANSITION

Effect of GHD on bone

- Increased BMD
- Decreased BMD
- Post-receptor GH signaling

Skeletal growth via growth plate

- Bone mineral and strength via osteoblast
- Short stature, growth failure
- Decreased BMD

Oral function for both males and females

- Reduced fertility in females

Kidney growth and function

- Adrenal cortical function
- Low GFR

** CNS development**

- Impaired memory, cognition, quality of life

Body composition: Direct and indirect effects on fat and skeletal muscle

- Decreased lean body mass
- Increased fat mass

Cardiovascular and lipid metabolism

- Dysglycemia
- Dyslipidemia

**Hypoglycemia
**

- Fever

Skeletally mature

- Height

Peak bone mass

- Height

Decrease in fracture risk

- Bone mass

BMI, body mass index; CVD, cardiovascular disease; MDT, multidisciplinary team; rhGH, recombinant human growth hormone

References

1. Lindsay R et al. Pediatr 1994;103:29-32